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AIlIb1Iet-A reduced stiffness method is presented for the estimation of lower bounds to the
imperfectiOilleftSitive pneraI budclinl ofuiaUy loaded, orthotropic:alty stiJfeaecl, elastic cylinders.
It pndicu many prcviOUlly incxplicable empirical oblervations and providea lower bounds to the
seatter of available test buckling loads, thus becominl useful as a design tool.

NOTATION
d, ring stiffener depth
d, stri.r stiffener depth
E modulus of elasticity

E/, El fundamental state membrane strains
j number of circumferential waves
j number of axial half waves
k ftcxural restraint coefficient
K extentional stilfness
I length of cylinder

m", m... m, incremental moment resultants
n, number of ring stiffeners
n, number of stringer stilfeners

n", nxlJt n, incremental stress resultants
Nx

F
, Nl fundamental state stress resultants

r radius of cylinder
s, ring stiffener spacing, !!ll/(n, + I)
s, stringer stiffener spacin.s. _ 21fTIn,
t thickness of cylinder skin

t, thickness of ring stiffener
t, thickness of stringer stiffener

11.11, w incremental displacements in x. (} and normal directions
U.. UII bending and membrane strain energy contributions

_ _ Y incremental total potential energy
j1~/. j1~/. V,/. V~l axial and circumferential components of non-linear membrane energy

x axial spatial coordinate
IX", IX, orthotropic axial and circumferential cxtensional stiffness ratios

l.", l..ri1t l., incremental membrane strains
'1 efficiency parameter
(J circumferential spatial coordinate
A non.cJimensional axial wavelenlth parameter. sjlcr/I
Jl Poisson's ratio

efi modal reduction factor. 'il!i1T~/rf,

p knock.cJown factor,!!lIT:",t1T""
IT axial stress

tlr ,,,: classical and reduced stiffness critical stress
IT_ u:. c1usica1 and reduced stiffness minimum critical stress

x.. x... XI incremental bending strains

Subscripts

B bendinS energy componmt
e bdonainl to critical mode

em belonllinl to minimum critical mode
exp experimental

ij belonBina to mode (i.j)
r ring stiffener parameter
s striager stiffener parameter

th theoretical
x belonpng in axial direction
8 belonpng in circumferential direction
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Superscripts
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F belonging to fundamental state
x belonging to axial direction
(J belonging to circumferential direction

stresses and strains linearly dependent on displacements
" stresses and strains quadratically dependent on displacements
• corresponding to ~u= stiffness model

"" containing non-linear strains
::= containing non-linear stresses
- evaluated at the centroid of the orthotropic cross-section

INTRODUCTION
The increased scope and ease ofanalysis offered by the still emerging and radically changing
computation environment has demonstrably broadened the range ofstructural systems for
which theoretical analysis can now be contemplated. But with the associated changes in the
nature of analysis many engineers are concerned that much of importance to the creative
design process is in danger ofbeing lost. Traditional analysis procedures for aU their tedium,
or perhaps even because of it, meant that the design analyst accumulated a wealth of
physical and even intuitive understanding of the relationships between changes in the forms
of structures and their response. In contrast, modem, usually computer based, analysis has
a tendency towards abstraction from both its physical base and its design context, relying
heavily on elegant but physically remote analytical and computational methods, that no
longer provide a direct vehicle for understanding the physics of structural behaviour.

This general tendency towards increasing of analysis and separation between com·
putation and analysis on one hand, and physics and design on the other can be clearly
discerned in the ways in which non-linear buckling phenomena are so often translated into
design. For what is perhaps the most notorious of sheD buckling problems, the axially
loaded cylinder, the present paper illustrates how the direct incorporation of physicaUdeas
on non-linear post buckling behaviour can provide a reliable and simple analysis that is
ideally suited to design. It will be shown how by incorporating these conceptually simple
ideas into a reduced stiffness model for the general elastic buckling analysis of axially
loaded orthotropically stiffened cylinders, it is possible to predict a number of important
but previously inexplicable aspects of their empirical behaviour. Apart from predicting the
unique modes observed to trigger buckling the reduced stiffness eigenvalue analysis of
buckling is shown to provide reliable lower bounds to the scatter of test buckling loads.
While many of these aspects have been described in recent publications[1-3], the present
paper develops the analytic simplicity of the method to provide compact theoretical lower
bounds to test buckling loads. These, it is argued, are ideally suited to design and may
be effectively employed at the early stages of conceptual design where major improvements
in structural efficiency can be achieved.

Although conCentrating on the elastic buckling of axially loaded cylinders the general
philosophy of analysis described is suggested to have very much wider potentialities. For
the imperfection sensitive buckling of other shell forms and other loading cases, and for
the interaction between elastic and plastic non-linearities the method has already been
shown to provide interesting practical possibilities[4].

A LOWER BOUND BUCKLING CONCEPT
'Before discussing the specific characteristics ofaxially loaded cylinder bucklingit will be

helpful to recall one or two general properties of systems exhibiting significant non
linearities in their post-buckling behaviour, and identify the circumstances in which their
buckling behaviour is likely to be sensitive to the forms and magnitudes of the~mall initial
imperfections. The first observation that can be made is that practically significant non
linearity in the post -buckling response can only occur where the physical conditions of the
problem enable changes in the membrane stiffness (of equivalently energy) from that
associated with the critical loads. This feature is of course well recognised by the fact that
it is membrane non-linearities that are usually incorporated into our non-linear analyses.
The very slight non-linearities in bending stiffness occurring in advanced post-critical states
are usually assumed to involve deformations whose magnitudes are so large as to be outside
any practical range.
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Whether these changes ire membrane stiffness lead to increases or decreases in the
structure's resistance to buckling deformations, that is whether the buckling is stabilisirca or
destabilising, depends upon the extent to which the membrane enerlY actually provides a
stabilisingcontribution to the initial resistance to bucklingdeformations. In sheUs it is often
the importance of this membrane energy in the critical modes that gives them their
advantage so far as buckling is concerned. But equally it is the pn:scnc:c of this membrane
stiWness in the critical modes that creates so many of the problems in understandina shell
buckling behaviour. There are many instances where thecombination ofinitial imperfection
and the coupling between the various possible buckling modescan lead to an erosion ofthis
vital membrane stiffness in the buckling response. Where this cx:eurs, and it is to a large
extent governed by the physical characteristics of a particular problem, the reduction in
membrane stiffness with increasing buckling deformation is associated with a loss of
post-buckled load carrying capacity. This leads to the second general observation that the
non-linearity in post-buc1clin, response Ctllt only be UlfStoble where the membr/l1U! stiffness, or
again related energy, contributes to the structure's resistance to deformation in the associllted
critical mode. Put more simply, a chanse in post-buckling membrane stiffness can only lead
to a loss ofstiffness if there is already positive membrane resistance, or energy, in the critical
mode. As to whether or not the response will be unstable depends upon the prevailing
physical conditions and the success of the lower bound methods depends upon the ability
to define which of the membrane stiffness components in the critical mode will be eroded in
the post-eritical response.

By identifying those components of the membrane stiffness, or equivalently energy,
that may be eroded during buckling, the reduced stiffness method then consists of an
eisenvalue analysis for the same system but with the appropriate components ofmembrane
energy eliminated. For the interactive buckling of built-up columns and plates the related
reduced modulus procedure is well established[s-8}. In some shells it would appear that
all the initial membrane strain energy may be lost, and applications of this approach may
be found in Ref. [9}. In other situations, such as the present classes of axially loaded
cylinder, only parts of the initial membrane energy would appear to be lost at the instant
of imperfection generated snap buckling. As an illustration of how the reduced stiffness
concept can lead to practically useful results, the following section reiterates some of the
features of the buckling ofaxially loaded cylinders central to the reduced stiffness method.

ANALYSIS OFAXIALLY LOADED CYLINDEIl BUCKLING

Background
Recent regeneration of interest in the buckling of stiffened cylinders derives from the

rapidly evolving applications of these structural components in marine structures. With
exploration and development taking place in oceans ofincreasing depth and environmental
hostility. and with the proliferation of different classes of platform in which the shell
components are being called upon to provide different combinations of bouyaney and
vertical load capacity, a number of important and as yet imperfectly understood buckling
problems are emerging. Under arbitrary combinations of axial and radial pressure loads
and making due allowance for the interactions between elastic and plastic behaviour, what
are the safe loads that may be sustained by these shells, what choices of stringer and ring
s~ffening should be made to improve the structural and functional efficiency, under what
cIrcumstances is it possible for the various possible buckling modes to interact and how
can ~his be allowed for or avoided in design. and how are all these aspects affected by the
pr~se nature ofend supports and initial imperfection forms relating to these components?
In conceiving of the possibility that non-linear computer based solution codes will provide
such comprehensive information and understanding, it is salutory to remind ourselves of
the current status of theoretical developments in cylindrical shell buckling.

Despite four decades ofat times frantic activity in the non-linear analysis of axial load
buckling of isotropic cylinders, it is probably still true to say that their observed behaviour
is only partially understood. These developments have seen a growth in the sophistication
of the non-linear buckling codes attempting to account for the observed imperfection
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sensitivity and forms of buckling. For an e'ltensive list of references see[lO]. They have
also been accompanied by an increase in the precision with which the test programmes
themselves are carried-out. For very small imperfections, in which the radial geometric
errors are orders of magnitude less than the thickness, the gap between theory and test
has undoubtedly been narrowed. The careful control of axisymmetric imperf.ectioDS in
Tennyson's tests [1 I}, for example, has provided a close quantitative confirmation of the
asymptotic predictions of Koiter's special theory[12]. And the prediction of a succession
of post-buckling configurations provided by inter alia Yamaki[l3] and Esslinger and
Geier(14] show similarities to observed post-buckling behaviour. But for moderate to large
imperfections of the same order as the thickness of the shell, considerable discrepancies
between theoretical predictions and experimental observation remain. For marine struc
tures whose scale and in-service conditions mean that tolerances will inevitably be less well
controlled than in aerospace applications, and certainly very much worse than in the
majority of past tests, this state of affairs must be of particular concern. Unlike the
applications in the aerospace it is not possible to proof-test full-scale prototypes of the
many and varied conditions prevailing for marine structures. Even if and when non-linear
theories are able to precisely reproduce the deterministic behaviour of a given test, it is
as yet unclear how they will be effectively incorporated into the design process. How, for
example, can they be used to generate patterns of general behaviour and to isolate which
parameters most crucially influence buckling performance? And over the immense possible
range of geometries, support and loading conditions, how can they be used to generate
data on imperfection sensitivity even for elastic systems, quite apart from that where
material yield provides a further important controlling influence? Against this background
it is clear: why expensive and time consuming non-linear analysis will in the near future
be unlikely to provide an effective design tool; why testing alone over a sufficiently wide
range of geometric and material parameters is unlikely to provide a purely empirical
alternative; and, how simple, but reliable procedures for predicting lower bounds would
provide such an attractive alternative.

But what are the alternatives, and is it possible for axial loading to develop lower bound
theories based upon the lines outlined above?

Reassessment of classical critical behaviour
To isolate all the important components of membrane energy that contribute to the

stabilisation ofan axially loaded cylinder, it is necessary to provide a slightly modified fonn
ofclassical critical load analysis. This has been more fully described for specific shell forms
in previous publications[1-3] so that here only the briefest outline is provided.

Consider the orthotropically stiffened cylinder shown in Fig. 1. For illustration suppose
that the boundary conditions conform with the classical simple support, and that under
an axial load the prebuckled, fundamental, state of equilibrium may be approximated by
the membrane stress' resultants (N/, N/)=.( - rx."ta, 0), where a is the magnitude of the
uniform axial tensile stress. The corresponding membrane strain state

will clearly not entirely satisfy the boundary constraints of even the simple support. The
parameters ax and 11./1 are respectively the ratios of the orthotropic axial and circumferential
shell rigidities to that of the cylinder skin[2, 3], so that

2,-d.t..!.
lIx = l+(l-J,l rsi

$

h~
lIe = I + (1 - J,l '-;:;-:S

r t

with the shell geometry shown in Fig. 1. The Poisson's ratio is denoted by J.l and the
modulus of elasticity by E. Later numerical studies, reported in relation to the test
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Fig. I. Notation for geometry of orthotropically stiffened cylinder.

comparisons[lS, 161, arc based upon an exact solution for the fundamental states which
required a non-linear, full bending, analysis of the prebuckled axisymmetric states, taking
into account the empirically appropriate boundary conditions.

For an incremental displacement about this loaded and deformed fundamental state
the incremental total potential energy, V, may be represented in the asymtotic form

V = Vo+ VI + V2 + Vl + ...... (I)

where the notation Vi' i = 0, 1,2 is used to denote contributions that involve the
ith power of the incremental displacements (u, v, w,). In this expansion the Vo term is of
no present consequence, VI is identically equal to zero (or strictly approximately zero if
the membrane fundamental state is assumed), and it is the quadratic, V2, term that in
general provides the first non-zero contribution. It is of course this quadratic tcrm that
determines at what loads and in which modes the fundamental equilibrium states become
critically stable; passing through such states arc the secondary paths whose characteristics
determine the type of post-buckling behaviour, which is governed by the nature of the
higher order terms Vl , V4,... in the expansion of eqn (l). For our present purposes,
however, it is the V2 term that plays the crucial role.

Using conventional thin shell theory the quadratic term when expanded may be
represented in the form

V2 = if[n;£; + n6£6 + 2n~~Jr dO dx

+!f[m;x; +m;'x;'+ 2m.rix.ri]r dO dx

+!f[N/£; + n;E/) + (Nl£'9 + n'9El)]r dO dx

5~+~+~+~+~+~ m
where (nx'"'' ":Af) and (m.... mg, m:Af) are the axial, hoop, shear or twist stress and moment
resultants respectively. and (Ex, E" E...,) and <xx. x,. X...,) their corresponding strains. The
single dash implies that the stress or strain is linearly related to the incremental
displacements. while the double dash indicates that the appropriate stress or strain depends
quadratically upon these displacements. The first and second integral represent what we
could refer to as linear membrane, UM. and bending, UB, strain energy contributions, to
reftect their origin in the linear strain-displacement relationships. The third integral is
broken down into its four separate components which can be seen to result from the
interaction between the fundamental state and the non-linear membrane actions associated
with the incremental displacements.

Stabilisation of the shell against incremental displacements about the fundamental
equilibrium states is provided by the linear strain energy U == U1tI + UB and. most
significantly for our present developments by the non-linear circumferential energy
component

(3)

5S Vol. 19. No. S-F
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With the hoop strain E/ being axisymmetric it is only the axiwmmetric bands of average
non-linear hoop stress ns that provide a net contribution to VMS. The significance of this
term so far as post-buckling behaviour is concerned will be disc],!ssed below. A con
ventional derivation of the critical loads in which all the terms VM'" PM'" ..... are lumped
together to give

fails to identify the important stabilisation provided by the product of the fuqdamental
hoop strain E/ and the non-linear hoop stress n;; as represented by the term PMB in eqn
(3). Of the other components arising from non-linear membrane action the term PM

S == 0,
by virtue ofNl = 0, while the axial terms «(JM" + PM") provide the negative or destabilising
contributions to the total potential energy. On the basis of this notation the classical
critical stress, Ue, may be represented as

(4)

where

V" _ dPM"
M.u - du .

The implication of the above discussion is that in determining the critical stress Ue

associated with a critical mode having i waves in the circumferential direction and j
half-waves in the axial direction, there is a certain stress u: above \l(hich the stability of
the shell is entirely dependent upon the contribution coming from PMS. This is depicted
in Fig. 2 which shows that below the stress level u: the sy.§tem would be stable, that is
V2 would be positive, even if the non-linear hoop energy PM' was not present. Between
the stress level u: and the classical critisal stress Ue the system would be unstable ifit were
not for the stabilisation provided by (JMS. Stress ue represents the classical critical stress
at which V2 = 0, and above which V2 < 0 and the f.!1ndamental equilibrium states would
be unstable. The practical importance of the term (JMS in stabilising the shell between u:
and Ue will be discussed in the next section. For present purposes we could simply observe
that for a typical isotropic shell, as shown in Fig. 3, the separation between Ue and u:
increases as the axial wavelength increases U decreases).

Post-buckling behaviour
The physical notions of post-buckling were identified at an early stage of the

development of axial load buckling theories. Donnell in his important contribution of
1934[17] clearly outlined how in the post-critical behaviour a continuing deformation into
the critical mode would involve the development of alternating bands ofnon-linear hoop

~-:r
""J

Axial dlsplacement.u Critical mode, "")

Fig. 2. Stability of paths.
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Fig. 3. Critical stress spectra for an isotropic cylinder.

stresses. These would represent the axisymmetric components of what we have here
referred to as n;. If it were not for an interaction with a certain axisymmetric deformation
mode, having half the axial wavelength as the critical mode, these non-linear contributions,
it \\'as argued, would contribute to the continuing stabilisation of the shell. By identifying
the nature of this coupling Donnell and many subsequent investigators have been able to
ensure that the essential degrees of freedom have been retained in their attempted
non-linear analysis of post-buckling.

These arguments are complementary to Koiter's reasoning, in his special theory[121,
that a shell in an axisymmetric state withj axial half-waves will have a periodic distribution
of circumferential tensile and compressive stresses. Buckling from this axisymmetric state
into a non-axisymmetric mode would be induced in regions of compressive hoop stresses
and hampered in regions of tensile hoop stresses, leading to the development of a
non-axisymmetric buckling mode with nodal lines at the regions of maximum tensile hoop
stresses, and therefore having twice the axial wavelength (or j/2 axial half-waves) of the
axisymmetric state.

What even Donnell's physically based notions did not make clear in his initial[l7] and
subsequent[18] discussions was why this coupling should actually lead to a loss of stiffness
of the system. As originally stated, Donnell's arguments explained why a non-linear
increase in stiffness, that would otherwise develop in the critical deformations of the shell,
would not occur as a result of the propounded coupling action. If a loss of stiffness
associated with an unstable post~buckling behaviour is to occur it is, of course. essential
that the average non-linear hoop stresses n; associated with this critical deformation,
should have provided a positive contribution to the initial stiffness of the shell in its
resistance to critical deformations. The above reanalysis of the critical behaviour provides
this vital missing link. Now it becomes clear why Donnell's postulated post-eritical
coupling actually leads to a 10$$ of stiffness of the shell.

As suggested in Fig. 2 deformations into a critical mode w/j would be accompanied by
a rapid loss of the initial stiffness provided by the term VM'. Even at exceedingly small
critical deformations wil it could be expected that the even smalJer components of
axisynynetric deformation needed to annihilate the initial stabilisation provided by the
term VM' would have developed. These axisymmetric coupling modes will therefore res.,plt
in very little increase in energy, particularly for the long axial wavelengths in which PM'
produces its most significant stabilisation. Even without any other loss of membrane
stiffness the axial load capacity would decrease until a plateau is reached at the load level
(l: for which V2 would just be critical even without the contribution from PM'. Increasing
imperfections in the form of the buckling mode Wq would for this unstable bifurcation have
the effect of producing a rapid drop-off in the maximum buckling load capacity, (lb, until
for moderate levels of imperfections (of the order of the shell's thickness) the maximum
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load would approach asymptotically the reduced stiffness critical load u:. It is these
features that can be conveniently incorporated into a simplified analysis of the lower
bounds to post-buckled loss of this stiffness.

Reduced stiffness lower bound buckling
If in the post-buckling behaviour a combination of the effects of the initial imper

fections and mode coupling produces a situation where PMIJ-+O then why not admit this
and base a critical load analysis on the reduced total potential energy

(5)

(6)

(7)

Exact analysis based upon this reduced energy (stiffness) model shows that the critical
modes are almost identical with those predicted in the full energy classical analysis. As a
consequence the so called reduced stiffness critical stress u:, based upon the expression

*_ (UM+UB) _(V~..,+P~..,+v~..,). =~.
U

c
- (V~..,+ t'~..,) - (V:'.., + p~..,) uc

- ij U
c

could be expected to provide reliable estimates of the exact values arising from stationarity
of the reduced energy eqn (5).

With the terms f1M'" ••••••• being almost entirely dependent upon the rotations about
the tangents of the sheD surface, the modal reduction factors, eij given as

, .. = (V~.., + p~.., + v~..,)
f/ - (V~.., + I'M..,)

can be represented in particularly convenient forms. If for the general orthotropically
stiffened cylinder of Fig. I it is assumed that the non-linear strains are with sufficient
accuracy given by

(8)

then the various non-linear strain energy terms can be shown to take the form

(9)

where K is the extensional rigidity of the shell wall.
Using these expressions and assuming that the critical displacements can be represented

by the mode

. j1tX 'a
W = wij sm -1- cos 111

the modal reduction factor may be expressed in the explicit form

2(rxxae - J.l2)
~ij = (2rxfllJ - J.l2) + J.lrxlJ(i/l)2

(10)

(11)
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(12)

where A= (ftt)/(I/r). The axial and circumferential wavelengths are I.., = 21fj and I, = 2nr/i,
so that (iIA) a (Ixll,). Assumin, p1. ~ I eqn (11) can be approximated as

I 1

ell~ I +Y !!..X~)2 a I +Y Jl)(~)2
2\«x A 2\«x I,

which leads to the interesting observation that for orthotropically stiffened shells the
potential reductions of bucklin,load in a given mode depend to large extent upon a single
composite parameter

which could be regarded as an effective Poisson's ratio. This explicit form for the reduction
factors leads to the important dcsisn analysis consideration that having once obtained the
spectra of classical critical loads, and there are well established procedures for this, the
reduced critical load spectra can be obtained directly from eqn (6) with the help ofeqns (11)
or (12). For boundary supports other than the simple supports the modal reduction factors
can be obtained from the expression

eq
= ¥P)(i)21+ - - k

2 t%.., A

(13)

where the parameter k depends upon the desree of flexural restraint at the ends. For the
simple support k = I, while for a fully clamped support k = i.

The results of the reduced critical load analysis, based upon either the direct stationarity
ofeqn (5) or on the quotient ofeqn (6), are shown for the previous example by the full lines
in Fig. 3. What these reduced stiffness critical stress spectra show is that the potential
reductions in buckling loads are greatest in the long axial wavelengths, and that there is a
unique critical wavelength (i,}) =: (i:" 1) for which the reduced stiffness critical stress takes
on its minimum value, 0':". At this minimum reduced stiffness critical stress the potentially
lfe&test knoclc-down in bucldingload will occur. On this basis a theoretical knock-down
factor.

u·
PItl=-!!!

UQIt
(14)

can be defined, where u. is the minimum critical stress of the shell obtained when using the
full stiffness. or classical. method. This prediction of a unique mode for which the coupling
described by Donnell will produce its potentially most severe reductions in buckling loads
would appear to have considerable practical significance. But does it agree with the very
considerable body ofempirical evidence that is available for these shells?

BUCKLING TESTS ON AXIALLY LOADED CYLINDERS

The predictions from the reduced stiffness analysis represent at first sight a fairly radical
departure from much ofthe conventional understanding ofaxial load bucklingofcylinders.
But a closer examination ofpast tests, and also some carefully conducted tests at University
College London, suggest that in fact this simplified model provides a remarkably close
representation of much previously inexplicable observed behaviour. The following com
parisons are presented as hein, typical of the much wider studies ofgeneral elastic buckling
of isotropic[19], and stringer(l5] and ring(16] stiffened shells undertaken at University
College London over the past few years. They are summarised here to show that there is in
these experimental results a clearly established pattern ofbehaviour fOf which the reduced
stiffness model provides an important unifying interpretive framework.
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ISOlropic cylinders
The body of test data for this degenerate case of orthotropic stiffening is considerable.

Perhaps the first feature of the reduced stiffness analysis that seems at odds with much of
the literature is the prediction that, with moderate levels of random imperfections, buckling
will be triggered by modes having long axial wavelensths and circumferential wavelengths
that are determined by the geometry of the perfect cylinder rather than by the precise
imperfection profile. But it is precisely this observation in the tests reported by Arbocz and
Babcock(20J that has so far defied adequate theoretical explanation. These tests incorpo
rated some of the most careful monitoring of the prebuckling growth of deformations ever
undertaken. Figure 8(a) of Ref. [20] shows that in an isotropic shell having I{r = 2.0,
r{I = 862 and jJ = 0.3, a clearly defined deformation has developed at a load 94% of the
eventual buckling load. This triggering mode has a single half-wave in the axial direction
and a circumferential distribution with dominant components from modes with circum
ferential wave numbers i = 9-11. Analysis of the same shell shows that the minimum
reduced stiffness critical stress a:..JE = 0.10 x 10- 3 occurs withj = I and i:":= 10. The fact
that the present lower bound appears to be a rather conservative estimate of the observed
buckling stress a,jE = 0.47 x 10 - 3 for this shell is a reflection of the very small initial
imperfections (with a maximum component of the order of 1110 in the buckling mode)
present in these carefully manufactured test specimens. Even so, these same small
imperfections were enough to bias the shell into a mode similar to that predicted by the
reduced stiffness theory to provide the most likely potential buckling mode. Moreover,
even though these imperfections were, predominantly composed of modes with a small
number of circumferential waves, i = 0-3 [20J, the observed triggering mode agrees with
the predicted reduced stiffness mode.

Where the imperfections become larger (of the order of the shell thickness) the reduced
stiffness predictions provide increasingly reliable lower bound estimates of buckling loads
in the long wavelength modes observed to trigger buckling. The shell having Ilr = 2.88,
rlt = 300 and jJ = 0.3, depicted in Fig. 3, was one of the geometries employed in Batista's
recent test programme[21]. A number of tests on different specimens of nominally identical
commercially available shells, having what appear to be practical levels of initial
imperfection, have confirmed that despite considerable differences in initial imperfection
profile the j = I triggering mode having ib between 7 and 8 agrees very closely with the
lower bound prediction at i:' = 8. The observed buckling stress, aln ranacd from 25 to 51%
of the classical critical stress, ac/, compared with the predicted lower bound (J:' == 0.24 ac/'

These results are superimposed on the theoretical plots of Fig. 3.
Similar behaviour has been observed for other geometries[I9-21J, but unfortunately in

the majority of test programmes data on the triggering modes, as opposed to the advanced
post-buckled mode patterns. has not been obtained. In these cases it is necessary to rely
upon information concerning the typically short axial wavelength diamond patterns
associated with what are usually fairly advanced post-buckled states. However, in those
cases where the triggering mode has been observed it appears that there is some correlation
between the circumferential wavelengths of the short post-buckled modes and the long
pre-buckled triggering modes. This has been commented upon and some qualitative
comparisons have been included in ref. [20]. These observations appear to suggest that
buckling into these short axial waves may occur as a result of the combination of the
average axial stress together with the periodic components resulting from the growth of
the long axial wavelength modes discussed above. A similar idea has recently been
proposed for the prediction of lower bounds to elasto-plastic buckling loads[4].

As further evidence that the theoretical lower bounds from the reduced stiffness method
provide practically realistic estimates of isotropic cylinder buckling consider the collected
buckling data(19, 24J shown io Fig. 4. Although oot gcocrally recognised, when compiling
the empirical data shown in Fig. 4, it was observed that the dependence ofbuckling stresses
on I;r may extend well beyond the Ilr = 0.5 limit that is sometimes acccptcd{22J. This
separate and at times considerable influence from Ilr on buckling stresses is predicted by
the reduced stiffness modelll]. Other factors that have been found by the reduced stiffness
modelling to exert some controlling influence on the potential imperfection sensitivity are
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the end boundary support conditions and the Poisson's ratio[1]. What Fig. 4 shows is that
there is a fairly convincing correlation between the experimental data and the lower bound
predictions of the present reduced stiffness method.

Stiffened cylinders
Orthotropically stiffened cylinders exhibit a classical bifurcation behaviour that has

some differences to that for the isotropic cylinder. Perhaps most important is the
consideration that the minimum classical critical load is generally associated with a
uniquely defined critical mode; the isotropic cylinder as illustrated in Fig. 3 has the
minimums associated with a wide range of axial wavelengths all occurring at the same load
level. This is shown in Figs. 5 and 6 for examples of lightly stiffened stringer and ring
stiffened cylinders respectively.

Provision of stringer stiffeners normally has the effect, shown in Fig. S, of making the
long axial wavelength j = I modes dominant even in the classical critical analysis.
Post-critical reductions due to the erosion of the still important VM' terms have the effect
"Of further reinforcing this likely importance of long axial wavelength modes. But as
illustrated in Fig. 5 there is usually a slight shift in the circumferential wavelength i:' at
which the minimum reduced stiffness critical stress 0':" occurs, compared with the
wavelength i_ associated with the minimum of the classical critical stress spectrum, 0'.",.

The general buckling of most stringer stiffened shells takes this form with the degree of
knock-down being dependent upon the precise form of the stiffening and shell geometry,
as well as the boundary conditions.

For ring stiffened shells a classical analysis shows that the minimum of the critical stress
spectrum is less well defined. The minimum, as illustrated in Fig. 6, is usually associated
with a shortening of the axial wavelength, and often occurs in the axisymmetric mode for
which i =O. By considering a full non-linear analysis of the fundamental equilibrium path,
which takes account of the appropriate end boundary conditions and the discreteness of
the ring stiffeners[16], this axisymmetric buckling shows itself to be not a bifurcation but
a non-linear "snap buckling" phenomenon. Takins. into account the potential loss of
stiffness in the post-buckling erosion of the term i'M', the possible forms of buckling
behaviour contrast strongly with those of the stringer stiffened shell. Maximum potential
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Fig. 6. Critical stress spectra for a ring stiffened cylinder.

loss of stiffness still occurs in the long axial wavelength modes for which j =1. Whether
these potential knock-downs of buckling load in the long axial wavelength modes are
sufficient to bring (J:' below the lowest of the short axial wavelength, axisymmetric,
classical critical stresses, 0'..", is dependent upon the precise form and extent of the ring
stiffening. As a consequence, even for the general buckling of ring stiffened cylinders a
transition in buckling behaviour is predicted to occur[3]. For lighUy stiffened cylinders an
imperfection sensitive buckling into a periodic mode of long axial wavelength would be
expected. This form of buckling is closely related to that discussed above for the isotropic
cylinder, whose behaviour can now be seen as simply part of the continuous and smooth
changes of behaviour occurring as stiffening forms are modified. For heavily ring stiffened
cylinders, in contrast, a relatively imperfection insensitive buckling into short axial
wavelengths, usually having an axisymmetric form, is predicted to occur[3]. These two
distinct fonns of buckling have been observed in tests [23], and in the collected test data
of Ref. [15] this test transition has been shown to conform with the predictions of the
reduced stiffness model.

To affect reliable analysis of orthotropically stiffened cylinders, and consequently
provide meaningful test comparisons, a number of analytical aspects need to be taken into
account. Most of these considerations also apply to certain isotropic cylinders, but as a
result of their stiffness or energy distributions in the classical critical behaviour, their
importance would only be felt for shells having low values of l/r and 'It. The first
important feature concerns the inclusion of geometric non-linearities in the fundamental
axisymmetric behaviour. These arise as a result of the bending disturbances caused by the
end boundary supports, and the eccentricity and discreteness of the stiffening. As
demonstrated in Ref. [16] the replacement of the smeared orthotropic modelling by a
discrete modelling of the ring stiffeners can have significant effects on the axisymmetric
non-linear behaviour, which in turn exerts a strong influence on the spectrum of critical
stresses for buckling into non-axisymmetric modes. Other factors that play an essential role
in the following comparisons include: the proper treatment of end boundary constraints,
including both static and kinematic eccentricity of the supports; the correct modelling of
stiffener torsional stiffness; and the effects of eccentricity in the positioning of
stiffeners[2, 3, 1'5, 16].

Recent detailed examination of all the elastic test results accessible to the authors,
making use of the best available analysis techniques shows a remarkably close conformity
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with the predictions of the reduced stiffness theory[IS). In Fig. 7 the summarised buckling
loads for stringer stiffened cylinders are presented as experimental knockdown factors. Pup.
which represent the ratio of their buckling stresses to the corresponding minimum classical
critical stresses. For each shell the theoretical knockdown factors. P.-, are defined in eqn
(13) as the ratio of the minimum reduced stiffness critical stress to again the minimum
classical critical stress. In presenting these results the test cylinders whose ends were fully
clamped, usually in massive rings, have been plotted separately from those tested with
simple support boundaries. In these latter tests considerable ambiguities surround the
question of what the exact boundary stiffness would be at the instant of buckling. For this
reason we have in our theoretical comparisons taken the most pessimistic estimate of the
reductions in stiffness that may have conceivably taken place. It is possibly for this reason
that some of the simple support results fall above the classical critical stress indicated by
the line Pup = I. This, together with the consideration that many of these tests were carried
out on carefully machined specimens for which the imperfections would conceivably be
considerably less than those typical of full scale marine structures, makes it surprising that
the present theoretical knockdowns provide as accurate lower bounds as those shown in
Fig. 7. Particularly for the test specimens having the relatively more controlled clamped
end supports, the considerable scatter of buckling loads is again convincingly bounded
from below by the inclined line representing the reduced stiffness minimum critical loads
P.-, and from above by the classical critical stress.

In comparing the test results for ring stiffened cylinders, the results have been separated
according to whether they corresponded to lightly or heavily stiffened shells. In this context
the division is equivalent to a separation as to whether buckling would be triggered by long
axial wavelength modes for which 0':" < O'CIII' or whether it would occur as an axisymmetric
short axial wavelength mode for which 0':" =O'CIII' The results are summarised in Fig. 8.
The degree of scatter of buckling loads exhibited by the lightly ring stiffened cylinders, of
Fig. 8(a) is again consistent with the upper and lower bounds predicted by classical and
reduced stiffness theories. For the heavily stiffened shells where the classical and reduced
stiffness critical loads would be identical, the scatter of test results about the perfect
correlation line would appear to be consistent with the degree of accuracy in controlling
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Fig. 7. Theoretical and experimental comparisons for stringer stiffened cylinders.
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the shell geometry, material properties and loading. Some of the reductions in buckling
load, shown in Fig. 8(b), could also be associated with a loss of material stiffness
accompanying the considerable geometric non-linearities producing the axisymmetric snap
buckling for these test shells.

The importance of the above comparisons is that here for the first time is a theory
capable of reproducing observed test behaviour over a wide range of shell and stiffener
geometries. Isotropic cylinder buckling emerges as simply a special case of orthotropic
cylinder buckling. The reduced stiffness model of post-critical loss of stiffness is found to
closely predict the modes triggering buckling over the entire range of geometries. But
perhaps more important for design, this simple theory provides lower bounds to the at
times considerable scatter of test buckling loads.

DESIGN IMPLICATIONS

The reduced stiffness method has been shown to provide a unified description of the
contrasting forms of general elastic buckling observed over a wide range of isotropic, ring
and stringer stiffened axially loaded cylinders. This has allowed the unique status, that is
sometimes ascribed to the isotropic cylinder, to be seen as merely a special case in the
continuous change in buckling phenomena experienced over the broader class of orthotro
pic cylinder buckling. It has also enabled a number ofpreviously unexplained experimental
observations to be located within a single, physically explicit and analytically simple,
framework. Indeed, the simplicity of the reduced stiffness method, the fact that it is based
upon a straight-forward incorporation of physical descriptions of non-linear post-buckling
behaviour, and the consideration that the method provides such agreeable confirmation of
observed buckling modes and at the same time providing lower bounds to the scatter of their
test buckling loads over almost the entire range of stiffened and unstiffened cylinder,
commend the method as a potentially powerful design analysis tool. When extended to allow
estimation of lower bounds for buckling that includes interaction between elastic and
material non-linearities, as well as other combinations of loading, the method should
provide a useful basis for the specification of design guidance notes.

But the general approach has other features which if exploited could be of considerable
potential benefit in the process ofconceptual design. Breaking down the cylinder's resistance
to buckling into its component parts indicates to the designer which of the shell's stiffness
components it would be most beneficial to modify if an improvement in elastic buckling is
to be affected through the use oforthotropic stiffening. The following design study is typical
of those that can be performed on the basis of the reduced stiffness method.
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Consider a simply supported cylinder offixed radius r - 4000 nun, length I - 4000 mm,
and suppose that the total volume ofsteel has been fixed at l.55 x 10' nun). For illustration
assume tbat the number ofequally spaced stringers is to be fixed at n, == 40 and that when
rillgs are employed their number n, == 24. The thickness of the strinaers. I" and rings, I"
will be talcen to be fixed ratios of the cylinder skin thickness, I. Parameters II.., and lit in
this context provide a measure of the amount of material moved from the skin into the
stringer and ring stiffeners respectively, and within the geometric constraints their
specification automatically prescribes the aspect ratios d,/I, and d,/I, of the stiffeners, and
consequently their bending stiffnesses.

Fipre 9 shows that as material is moved from the skin into strinser stiffeners, that is
II.., increases while «, == 1.0, there is at fint a reduction in the load carrying efficiency of
the shell. The eftlciency parameter, 'I, is a measure of the ratio of the minimum reduced
stiffness critical load of the stiffened cylinder to that of the equivalent weisht isotropic
cylinder[2, 3]. The reason for this decline is that in the long axial wavelensth periodic
modes trigering buckling in this isotropic sbell the circumferential bending is of
considerable importance, while the axial bending energy provides a smaller contribution
to the resistance to buckling{2]. Reducing the circumferential bending stiffness by
decreasing the skin thickness has the effect of initially decreasing the total resistance to
buckling deformations. Only when the increase in axial bending stiffness becomes
considerable, and this occurs only at large II..., does this loss of circumferential bending
energy (or stiffness) become compensated for by a concomitant increase in axial bendil1&
and to a lesser extent membrane, energy. Eventually, the increases in axial bending energy
are sufficient that they more than compensate the loss of the circumferential components.
Eventually, an overall increase in resistance will occur. But it is evident in Fig. 9 that to
achieve increase in elastic material efficiency through the use of stringers would require
very heavy levels of stiffening in which (I.., is large, or very slender stiffeners having high
ds/II' This suggests that if in future design stringer stiffener topologies are to be adopted
to improve elastic buckling strength, without introducing excessive fabrication problems,
a trend towards increasing slender stiffener outstands might be expected. Such a tendency
would need to be monitored very carefully to ensure that no interaction between general
buckling and local stiffener tripping could take place.

Moving material from the skin into ring stiffeners has a sharply contrasting effect. The
circumferential bending energy contribution, which is already large in the isotropic shell,
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is now rapidly increased. Since the axial bending energy contributes relatively little in the
long axial wavelength triggering modes(3], its reduction through a loss of skin thickness
is of little consequence. As a result the resistance to general buckling in these long axial
wavelength modes is rapidly increased with even small quantities of ring stiffening, that
is a./J sman. Eventually, a point is reached at which buckling into the long axial wavelength
periodic modes occurs at loads greater than those associated with short axial wavelength
modes. With the resistance to these shott axial wavelength modes being dominated by axial
bending energy[3], the use of decreasing skin thickness, associated with increasing a" will
result in a rapid drop-off in load carrying efficiency. It is for this reason that the lower
bound carrying efficiency displays a strong optimum at the value of a, for which the long
axial wavelength and short axial wavelength general modes have coincident buckHng lOads.
The possible increases in load carrying capacity obtainable through the use of these
optimum ring stiffening geometries appear to be considerable. This, combined with the
evident fabrication advantages that could be exploited by use of tbe small squat ring
stiffeners associated with these optimum designs, make these carefully dimensioned ring
stiffeners an attractive practical proposition when elastic buckling is a major controlling
influence on collapse.

CONCLUSIONS

By identifying the components of the energy which provide a significant contribution in
the initial resistance to buckling deformations, and which are lost in the imperfection
sensitive mode couplings that occur in the post-buckling behaviour of axially loaded
orthotropically stiffened cylinders, it has been possible to define an appropriate reduced
stiffness buckling model. Analysis of this reduced stiffness model has a number ofpractically
attractive features.

(I) In contrast with the classical analysis, it predicts the unique buckling modes ob
served to trigger the buckling of cylinders over a wide range of ring and stringer stiffener
geometries. It shows how apparently unique forms of buckling experienced by isotropic
cylinders can be viewed as simply special cases of the behaviour of orthotropically stiffened
shells.

(2) Over a wide range of shell and stiffener geometries it provides lower bounds to the
at times considerable scatter of test buckling loads.

(3) It achieves this on the basis of an analysis that has its origins in direct physical
arguments, which in their tum help to clarify how and in what form the use of stiffeners is
likely to improve the elastic buckling performance.

(4) By avoiding the complexities of non-linear analysis it allows for the possibility of
encapsulating the lower bound predictions in simple forms that should be eminently suited
to the requirements of design codes and guidance documents.

The general philosophy of the reduced stiffness method is advanced here as an illustra
tion of the design advantages that accrue when the analyst is forced to consider what are the
physical characteristics of bebaviour. Its uniqueness and simplicity, and especially its lower
boundedness, should recommend the method as a practical basis for the rational design of
orthotropically stiffened cylinders.
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